Fourier Transform Examples
Here we will learn about Fourier transform with examples.
Lets start with what is fourier transform really is.
Definition of Fourier Transform
The Fourier transform of $ f(x) $ is denoted by $ \mathscr{F}\{f(x)\}= $$ F(k), k \in \mathbb{R}, $ and defined by the integral :
$ \mathscr{F}\{f(x)\}=F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} f(x) d x $
Where $ \mathscr{F} $ is called fourier transform operator.
The inverse Fourier transform, denoted by $ \mathscr{F}^{-1}\{F(k)\}=f(x), $ is defined by
$ \mathscr{F}^{-1}\{F(k)\}=f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} F(k) d k $
where $ \mathscr{F}^{-1} $ is called the inverse Fourier transform operator.
Examples of Fourier Transform
Example #1
Find the Fourier transform of exp $ \left(-a x^{2}\right) $.
By fourier transform formula we have,
$ F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x-a x^{2}} d x $
$ =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left[-a\left(x+\frac{i k}{2 a}\right)^{2}-\frac{k^{2}}{4 a}\right] d x $
$ =\frac{1}{\sqrt{2 \pi}} \exp \left(-k^{2} / 4 a\right) \int_{-\infty}^{\infty} e^{-a y^{2}} d y $
$ =\frac{1}{\sqrt{2 a}} \exp \left(-\frac{k^{2}}{4 a}\right) $
Here is the graph of fourier transform
Example #2
Find the Fourier transform of a below non periodic function
$ f(x)=\left\{\begin{array}{ll}{1,} & {-1\lt x\lt 1} \\ {0,} & {|x|\gt 1}\end{array}\right. $
The above function is not a periodic function.
A non periodic function cannot be represented as fourier series.But can be represented as Fourier integral.
Then,using Fourier integral formula we get,
$ F(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x $ $ =\frac{1}{2 \pi} \int_{-1}^{1} e^{-i k x} d x $
$ =\frac{1}{2 \pi}\left.\frac{e^{-i k x}}{-i k}\right|_{-1} ^{1} $$ =\frac{1}{\pi k} \frac{e^{-i k}-e^{i k}}{-2 i}$$=\frac{\sin k}{\pi k} $
This is the Fourier transform of above function.
We can find Fourier integral representation of above function using fourier inverse transform.
$ f(x)=\int_{-\infty}^{\infty} \frac{\sin k}{\pi k} e^{i k x} d x $
$ =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin k(\cos k x+i \sin k x}{k} d k $
$ =\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin k \cos k x}{k} d k $
This is the fourier integral representation of our non periodic function.