Full of Math Examples

Fourier Transform Examples

Here we will learn about Fourier transform with examples.

Lets start with what is fourier transform really is.

Definition of Fourier Transform

The Fourier transform of $ f(x) $ is denoted by $ \mathscr{F}\{f(x)\}= $$ F(k), k \in \mathbb{R}, $ and defined by the integral :

$ \mathscr{F}\{f(x)\}=F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} f(x) d x $

Where $ \mathscr{F} $ is called fourier transform operator.

The inverse Fourier transform, denoted by $ \mathscr{F}^{-1}\{F(k)\}=f(x), $ is defined by

$ \mathscr{F}^{-1}\{F(k)\}=f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} F(k) d k $

where $ \mathscr{F}^{-1} $ is called the inverse Fourier transform operator.

Examples of Fourier Transform

Example #1

Find the Fourier transform of exp $ \left(-a x^{2}\right) $.

By fourier transform formula we have,

$ F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x-a x^{2}} d x $
$ =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left[-a\left(x+\frac{i k}{2 a}\right)^{2}-\frac{k^{2}}{4 a}\right] d x $
$ =\frac{1}{\sqrt{2 \pi}} \exp \left(-k^{2} / 4 a\right) \int_{-\infty}^{\infty} e^{-a y^{2}} d y $
$ =\frac{1}{\sqrt{2 a}} \exp \left(-\frac{k^{2}}{4 a}\right) $

Here is the graph of fourier transform

fourier transform example graph

Example #2

Find the Fourier transform of a below non periodic function

$ f(x)=\left\{\begin{array}{ll}{1,} & {-1\lt x\lt 1} \\ {0,} & {|x|\gt 1}\end{array}\right. $

fourier transform non periodic example

The above function is not a periodic function.
A non periodic function cannot be represented as fourier series.But can be represented as Fourier integral.

Then,using Fourier integral formula we get,

$ F(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x $ $ =\frac{1}{2 \pi} \int_{-1}^{1} e^{-i k x} d x $
$ =\frac{1}{2 \pi}\left.\frac{e^{-i k x}}{-i k}\right|_{-1} ^{1} $$ =\frac{1}{\pi k} \frac{e^{-i k}-e^{i k}}{-2 i}$$=\frac{\sin k}{\pi k} $

This is the Fourier transform of above function.

We can find Fourier integral representation of above function using fourier inverse transform.

$ f(x)=\int_{-\infty}^{\infty} \frac{\sin k}{\pi k} e^{i k x} d x $
$ =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin k(\cos k x+i \sin k x}{k} d k $
$ =\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin k \cos k x}{k} d k $

This is the fourier integral representation of our non periodic function.

Furthur Reading