Full of Math Examples
FULL OF MATH EXAMPLES
HOME LEARN EXAMPLES PROBLEMS TOOLS

Integration by parts Examples

Here are the all examples in Integration by parts method.

Integration by parts is a method for solving integration problems.
By using property of integragtion of product of two function.
$ \int u d v=u v-\int v d u $

Example #1

Find the integration of $ x \cos x d x $ using integration by parts.

Put $ f(x)=x $ (first function) and $ g(x)=\cos x( $ second function) Then, integration by parts gives
$ \int x \cos x d x=$$x \int \cos x d x-\int\left[\frac{d}{d x}(x) \int \cos x d x\right] d x $

$ =x \sin x-\int \sin x d x$$=x \sin x+\cos x+C $

Example #2

Find the integration of $ e^{x} \sin x $ using integration by parts method.

Take $ e^{x} $ as the first function and $ \sin x $ as second function.
Then, Integrating by parts gives us,
$ \mathrm{I}=\int e^{x} \sin x d x $$=e^{x}(-\cos x)+\int e^{x} \cos x d x \\ =-e^{x} \cos x+\mathrm{I}_{1}(\text { say }) ....(1) $
Taking $ e^{x} $ and $ \cos x $ as the first and second functions, respectively, in $ \mathrm{I}_{1}, $ we get
$ \mathrm{I}_{1}=e^{x} \sin x-\int e^{x} \sin x d x $
Substituting the value of $ \mathrm{I}_{1} $ in $ (1), $ we get
$ \mathrm{I}=-e^{x} \cos x+e^{x} \sin x-\mathrm{I} $
or $ 2 \mathrm{I}=e^{x}(\sin x-\cos x) $
Finally, $ \mathrm{I}=\int e^{x} \sin x d x$$=\frac{e^{x}}{2}(\sin x-\cos x)+\mathrm{C} $

Example #3

Find the integration of $ x^{2} \sin x d x $ using integration by parts method.

$ \int x^{2} \sin x d x$$=-x^{2} \cos x+\int 2 x \cos x d x $
$ =-x^{2} \cos x+2 x \sin x-\int 2 \sin x d x $
$ =-x^{2} \cos x+2 x \sin x+2 \cos x+C $

Example #4

Find the integration of $ x^{3} e^{-x^{2}} d x $ using integration by parts method.

Firstly , we rewrite integral as $I= \int x^{2} (x e^{-x^{2}}) d x$
$ I=-\frac{1}{2} x^{2} e^{-x^{2}}-\int(-x) e^{-x^{2}} d x$
$=-\frac{1}{2} x^{2} e^{-x^{2}}-\frac{1}{2} e^{-x^{2}}+c $

Example #5

Find the integration of $ e^{a x} \cos b x d x $ using integration by parts method.

Integrating by parts, taking $ e^{a x} $ as the first function, we find
$ I=e^{a x}\left(\frac{\sin b x}{b}\right)-\int a e^{a x}\left(\frac{\sin b x}{b}\right) d x $

Taking integration by parts second time$ I=e^{a x}\left(\frac{\sin b x}{b}\right)-a e^{a x}\left(\frac{-\cos b x}{b^{2}}\right)+\int a^{2} e^{a x}\left(\frac{-\cos b x}{b^{2}}\right) d x $integral on the RHS is just $ -a^{2} / b^{2} $ times the original integral $ I $ . Thus
$ I=e^{a x}\left(\frac{1}{b} \sin b x+\frac{a}{b^{2}} \cos b x\right)-\frac{a^{2}}{b^{2}} I $
Rearranging and adding integration constant gives
$ I=\frac{e^{a x}}{a^{2}+b^{2}}(b \sin b x+a \cos b x)+c $

Furthur Reading