Differentiation Problems
Here is the differentiation problem set to test your differentiation skills.
Differentiation chain rule exercises
Explore these Differentiation examples to learn.
$ \tan (2 x+3) $
$ \sin \left(\cos \left(x^{2}\right)\right) $
$ \frac{\sin (a x+b)}{\cos (c x+d)} $
$ \sin \left(x^{2}+5\right) $
$ \cos (\sin x) $
$ \sin (a x+b) $
$ \sec (\tan (\sqrt{x})) $
$ \cos x^{3} \cdot \sin ^{2}\left(x^{5}\right) $
Differentiation product rule problems
These Problems can be easily solve using differentiation product rules .
$ y=x^{2} \cos 3 x $
$ y=\left(1-x^{3}\right) e^{2 x} $
$ y=x^{3}(4-x)^{1 / 2} $
$ x \mathrm{e}^{x} \sin x $
$ x \tan x $
$ x^{2} \mathrm{e}^{-x} $
Differentiation quotient rule exercises
Solve these problems using differentiation quotient rule .
$ \frac{\cos x}{x^{2}} $
$ \frac{\mathrm{e}^{2 x}}{x} $
$ \frac{3 x-4}{2 x+1} $
$ \frac{\sin x}{x} $
$ \frac{\mathrm{e}^{-3 x}}{x^{2}+1} $
$ \frac{x^{2}+6}{2 x-7} $
Logarithmic differentiation problems
These Problems can be easily solve using logarithmic differentiation .
$ x^{\sin x}, x\gt 0 $
$ a^{x} $
$ y^{x}+x^{y}+x^{x}=a^{b} $
$ x^{y}+y^{x}=1 $
$ y^{x}=x^{y} $
$ x y=e^{(x-y)} $
Solve these math problems by yourself.
If you could not solve a problem ask for help using post your problem .